Graphs of bounded cliquewidth are polynomially $χ$-bounded

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On (δ, χ)-Bounded Families of Graphs

A family F of graphs is said to be (δ, χ)-bounded if there exists a function f(x) satisfying f(x) → ∞ as x → ∞, such that for any graph G from the family, one has f(δ(G)) ≤ χ(G), where δ(G) and χ(G) denotes the minimum degree and chromatic number of G, respectively. Also for any set {H1,H2, . . . ,Hk} of graphs by Forb(H1,H2, . . . ,Hk) we mean the class of graphs that contain no Hi as an induc...

متن کامل

$χ$-bounded Families of Oriented Graphs

A famous conjecture of Gyárfás and Sumner states for any tree T and integer k, if the chromatic number of a graph is large enough, either the graph contains a clique of size k or it contains T as an induced subgraph. We discuss some results and open problems about extensions of this conjecture to oriented graphs. We conjecture that for every oriented star S and integer k, if the chromatic numbe...

متن کامل

Definable decompositions for graphs of bounded linear cliquewidth

We prove that for every positive integer k, there exists an mso1-transduction that given a graph of linear cliquewidth at most k outputs, nondeterministically, some clique decomposition of the graph of width bounded by a function of k. A direct corollary of this result is the equivalence of the notions of cmso1-definability and recognizability on graphs of bounded linear cliquewidth.

متن کامل

Polynomially bounded C0-semigroups

We characterize generators of polynomially bounded C0-semigroups in terms of an integrability condition for the second power of the resolvent on vertical lines. This generalizes results by Gomilko, Shi and Feng on bounded semigroups and by Malejki on polynomially bounded groups.

متن کامل

Polynomially Bounded Recursive Realizability

A polynomially bounded recursive realizability, in which the recursive functions used in Kleene’s realizability are restricted to polynomially bounded functions, is introduced. It is used to show that provably total functions of Ruitenburg’s Basic Arithmetic are polynomially bounded (primitive) recursive functions. This sharpens our earlier result where those functions were proved to be primiti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Combinatorics

سال: 2020

ISSN: 2517-5599

DOI: 10.19086/aic.13668